CONTENUTI

In tempi recenti, in ambito neuroscientifico, è stato introdotto il concetto di "connettoma" per definire le connessioni (funzionali e strutturali) presenti all'interno del cervello a diverse scale di complessità (dai microcircuiti neuronali ad estese aree cerebrali). Parallelamente, si è sempre più diffusa la convinzione, supportata da numerose evidenze sperimentali, che il cervello operi attraverso l'attività congiunta e coordinata di molti neuroni (la codifica e lo scambio dell'informazione avviene attraverso popolazioni neuronali) rendendo sempre più importante studiare l'interazione tra l'attività elettrica del cervello e la struttura che fa da supporto a tale attività. In quest'ottica, lo studio della connettività all'interno delle singole popolazioni e tra le popolazioni diventa un elemento essenziale per poter meglio comprendere i meccanismi di comunicazione e di elaborazione dell'informazione del cervello. Le neurotecnologie si stanno affermando come ambito in cui l'ingegneria e le neuroscienze trovano un punto sinergico per affrontare con nuovi metodi e tecniche lo studio del cervello. In quest'ambito, l'utilizzo di sistemi semplificati, quali le colture di neuroni accoppiati a matrici di microelettrodi, rappresenta un possibile approccio al problema allo scopo di affinare e testare quelle metodologie che potranno poi essere applicate a modelli sperimentali in-vivo e quindi al cervello umano. Nei paragrafi seguenti, utilizzando modelli sperimentali in-vitro, si presenteranno alcuni esempi relativi allo studio della dinamica di reti neuronali in relazione alle connessioni che si formano nella rete.

SOMMARIO

1. INTRODUZIONE. 2. RETI CORTICALI ACCOPPIATE A MATRICI DI MICROELETTRODI. 3. DINAMICA DI RETI CORTICALI. Cervello, valanghe neuronali e Self Organized Criticality. II paradigma della pila di sabbia (sandpile model). Cervello e complessità. 4. RETI DI NEURONI E CONNETTIVITÀ FUNZIONALE. Teoria delle reti complesse: definizioni di base. Tipo di connessioni e stima della connettività. Stima delle mappe di connettività da dati sperimentali. 5. CONCLUSIONI E PROSPETTIVE FUTURE.

di Sergio Martinoia ${ }^{1,2}$, Michela Chiappalone ${ }^{2}$, Paolo Massobrio ${ }^{1}$

1. Introduzione

Apartire dai primi pionieristici studi di neuroanatomia di Ramon y Cayal, è noto che gli elementi neuronali del cervello costituiscono una formidabile e complicata struttura a rete (Sporns et al., 2002). Nel corso del secolo scorso, si sono via via aggiunte evidenze sperimentali che questo affascinante substrato strutturale anatomico supporta e sostiene l'emergere di una dinamica complessa che costituisce quello che va sotto il nome di "correlato funzionale del comportamento e dei processi cognitivi". L'emergere di strutture a rete (che cambiano dinamicamente nel tempo) in grado di mostrare attività elettrica (elettrofisiologica) coerente, quali oscillazioni a diverse frequenze che operano tra regioni diverse segregate sia spazialmente sia temporalmente, indica, come preconizzato da Donald Hebb nel suo "The Organization of Behavior" (Hebb, 1949) che
la codifica dell'informazione neuronale avviene a livello di popolazioni neuronali funzionalmente connesse. In tempi recenti la teoria dei grafi (Diestel, 2010) ha fornito un formidabile strumento per l'analisi delle reti neuronali, in generale, e per lo studio dell'interazione tra struttura e funzione, in particolare, fornendo alcuni strumenti per investigare i meccanismi di codifica e di trasmissione dell'informazione all'interno del cervello.
In parallelo, in ambito neuroscientifico, si è assistito in questi ultimi anni all'avvento di nuove tecniche per mappare la connettività anatomica, grazie a nuove metodiche di genetica molecolare e optogenetica e di microscopia ottica (Lichtman et al., 2008, Luo et al., 2008). Di recente è apparso sulla rivista «Nature» (ref) un articolo di un gruppo di scienziati dell’Università di Harvard in grado di ottenere una moltitudine di colori per evidenziare diversi neuroni all'interno delle strutture cerebrali. L'effetto è stupefacente e non è un caso che

[^0]sia stato immediatamente battezzato "brainbow" mettendo insieme la parola "brain" con la parola "rainbow" (arcobaleno). In figura 3.1 è riportata un'immagine in fluorescenza che presenta proprio una moltitudine di neuroni che si illuminano a formare un arcobaleno di punti, permettendo l'identificazione delle singole cellule e dei loro collegamenti (figura qui in scala di grigio per motivi tipografici n.d.r.).
Per gli aspetti funzionali, grazie a tecniche di elettrofisiologia multi-sito, nuovi studi sia in-vivo che in-vitro hanno investigato la codifica dell'informazione in insiemi di popolazioni neuronali (Buzsaki, 2004, Kermany et al., 2010, Panzeri et al., 2010). Un particolare settore in cui l'elettrofisiologia multi-sito si è ormai affermato come nuovo paradigma di indagine è quello delle interfacce cervello macchina (Brain Machine Interfaces, BMIs). Principalmente grazie agli studi dei gruppi di Nicolelis (Chapin et al., 1999), Schwartz (Taylor et al., 2002) e Donoghue (Hochberg et al., 2006), si è affermato il paradigma per cui è possibile estrarre in tempo reale l'informazione necessaria a muovere (per esempio) un arto artificiale, registrando segnali da popolazioni neuronali in corteccia motoria e pre-motoria. I particolari pattern di attività che vengono registrati sono convertiti in segnali "utili" per attuare un sistema artificiale attraverso la decodifica dei segnali stessi e l'utilizzo di modelli computazionali. Con questi studi è stato possibile dimostrare come il codice di elaborazione dell'informazione sia distribuito (distributed coding principle) e che occorra un certo numero di neuroni per comporre un sistema in grado di elaborare l'informazione (population coding), da cui l'informazione possa essere estratta (mass effect principle), che l'informazione sia ridondante o che la stessa informazione possa essere estratta da insiemi neuronali parzialemente sovrapposti (multi-tasking principle) (Nicolelis and Lebedev, 2009). In figura 3.2 è riportato lo schema di decodifica dell'attività neuronale in movimento di un robot.
Nonostante la mole di studi in-vivo (sia su ratto che su scimmia) relativi alla possibilità di estrarre informazione

FIGURA 3.1 - Dall'alto in basso: immagine in fluorescenza di una particolare regione del cervello (l'íppocampo di topo) e ingrandimento della parte indicata nel pannello. Le gradazioni di grigio dei diversi corpi cellulari e delle arborizzazioni sono ottenute con tecniche di espressione transgenica di tipo combinatorio. I vari colori che i neuroni emettono (opportunamente illuminati) permettono di identificare le singole cellule e come queste siano collegate tra loro. (Adattato da: "Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system", Jean Livet et al. doi:10.1038/nature06293)
"utile" per costruire interfacce verso sistemi artificiali (ad esempio un braccio meccanico come in figura 3.2), resta ancora spesso irrisolto come i neuroni siano strutturalmente e funzionalmente connessi tra loro e quale sia l'interazione tra il substrato anatomico-funzionale e i pattern elettrofisiologici neuronali che emergono da tali strutture.
Un ultimo ed interessante spunto sulle caratteristiche peculiari del nostro cervello come sistema complesso, che è nato in questi ultimi anni a partire da un lavoro del gruppo di Plenz (Beggs and Plenz, 2003, 2004), riguarda l'analisi dei sistemi di popolazioni neuronali come sistemi che si auto-organizzano, dinamicamente, in uno stato che viene definito "critico". Tale definizione trova la sua origine dagli studi sulla fisica dei sistemi complessi introdotta da Bak
(Bak et al., 1988) che, mettendo insieme la nozione di sistemi auto-organizzati (self-organized) con quello di criticalità, introduce il concetto di Self-Organized Criticality (SOC). Utilizzando questo paradigma, che trova applicazione nei più svariati campi dei fenomeni naturali (magnetizzazione nei superconduttori, terremoti, incendi boschivi, tempeste solari, evoluzione, ecc.), in una pubblicazione del 2003, Plenz applica questi concetti anche ai sistemi neuronali, coniando il termine valanghe neuronali. Questo lavoro ha stimolato molti studi successivi che si sono focalizzati sulla verifica di tale fenomeno su scale sia spaziali che temporali, sia in modelli sperimentali in-vivo (Petermann et al., 2009, Tetzlaff et al., 2010) che in-vitro (Pasquale et al., 2008). L'importanza di un tale approccio è legato alla possibi-

lità di trasmettere e ricevere l'informazione (per esempio di tipo sensoriale) in modo ottimale. In sostanza se anche i sistemi neuronali (a diverse scale e su diversi livelli sia strutturale-funzionale che dinamico) si auto-organizzano per raggiungere uno stato definito "critico", la permanenza in tale stato ottimizza e massimizza la possibilità di trasferire efficacemente l'informazione all'interno di una popolazione.

2. Reti corticali accoppiate a matrici di microelettrodi

Le matrici di microelettrodi (MEA) rappresentano oggi, in ambito neuroscientifico, un valido strumento per la registrazione continua dell'attività elettrica di reti neuronali sia in-vitro che in-vivo. Per molti anni in passato (e ancora di recente) i neurofisiologi hanno investigato l'attività del cervello e delle sue componenti (aree, insiemi cellulari, reti neurali in-vitro) esaminando l'attività elettrofisiologica di un singolo neurone o di pochi neuroni (registrati dal medesimo elettrodo) ed effettuando prove ripetute. Questo, sia durante la registrazione di attività spontanea, che durante specifica stimolazione (eletrica, chimica, sensoriale). In
realtà, sebbene introdotti con alcuni lavori pionieristici alla fine degli anni ' 70 inizio anni '80 sia per applicazioni invitro che in-vivo (Gross et al., 1982, Wise et al., 1984), solo negli anni '90 si sono diffusi largamente in ambito scientifico e sono mano a mano divenuti prodotti commerciali. Per quanto riguarda lo sviluppo tecnologico dei dispositivi, la produzione di MEA è stata inizialmente derivata dai processi di fabbricazione microelettronica (tecnologia CMOS e a film-sottile) e, solo in seguito, è stata specificamente sviluppata con l'intento di costruire dispositivi biocompatibili e di facile utilizzo per applicazioni neuronali.
Per quanto riguarda le misure in-vitro, delle quali ci occuperemo in questo capitolo, le matrici di microtrasduttori permettono di effettuare una registrazione non-invasiva, a lungo termine e multisito del segnale elettrico di reti neuroni ottenuti da colture primarie o da fettine di cervello (acute o organotipiche ${ }^{1}$). La moderna tecnologia MEA consente la caratterizzazione dei pattern di attività della rete sia a livello della singola cellula (potenziale d'azione) sia a livello di reti neuronali complesse viste come unità funzionali di base. Per mezzo di tali dispositivi è possibile caratterizzare la dinamica neuronale di
diversi preparati biologici che vanno da neuroni di invertebrati (Mazzoni et al., 2007, Massobrio et al., 2009), a diverse aree cerebrali di mammiferi come, ad esempio, la corteccia (Chiappalone et al., 2007) o l'ippocampo (Brewer et al., 2009), studiare il loro sviluppo (Chiappalone et al., 2006), stimolare elettricamente (Wagenaar et al., 2004, Wagenaar et al., 2005) o stimolare chimicamente (Martinoia et al., 2005), per indurre plasticità sinaptica a livello di rete (Chiappalone et al., 2008). Le registrazioni elettrofisiologiche sono dette di tipo extracellulare (il segnale viene registrato da un elettrodo posto all'esterno della membrana cellulare) e consistono di un segnale significativo soprasoglia (spike) che può essere facilmente estratto dal rumore di fondo biologico ed elettrico. In figura 3.3 è riportato un esempio di coltura di neuroni corticali di ratto estratti da embrioni a 18 giorni di età gestazionale (E18).
Nel corso degli ultimi trent'anni, questi sistemi e dispositivi sono stati costantemente migliorati e, in tempi recenti, sono stati oggetto di diversi sviluppi riguardanti aspetti di micro e nano tecnologia (Pearce and Williams, 2007) volti a coniugare la misura di un singolo neurone con la misura di popolazione. Gli sforzi sono stati orientati a miglio-

[^1]rare le performance di registrazione e di stimolazione, modificando i materiali degli elettrodi che costituiscono l'interfaccia verso la singola cellula (per esempio metalli nobili, nitruro di titanio e di recente nanotubi di carbonio) (Keefer et al., 2008, Shoval et al., 2009), le morfologie dell'elettrodo (Maher et al., 1999, Heuschkel et al., 2002, Hai et al., 2010) e la geometria di disposizione degli elettrodi. Il tutto per rendere la tipologia di dispositivo adatta e maggiormente biocompatibile per interfacciarsi con specifici modelli sperimentali. Sfruttando e sviluppando i vantaggi offerti dalle tecnologie, altre innovazioni si sono rivolte al completamento delle caratteristiche funzionali di tali sistemi, includendo l'integrazione di sensori fisici e chimici, di microstrutture di confi-
namento per favorire la crescita guidata della rete e di sistemi di micro-fluidica (Kraus et al., 2006). Lo sfruttamento della tecnologia al silicio a partire dai primi lavori del gruppo di Fromherz (Fromherz etsal., 1991) ha prodotto in questi ultimi anni una varietà di dispositivi interessanti che hanno portato il numero di siti di registrazione da poche decine a qualche migliaio e la densità di elettrodi per mm^{2} da qualche decina a qualche centinaio-migliaio. Questi sistemi innovativi offrono, inoltre, i vantaggi tipici della tecnologia CMOS in termini di integrazione elettronica (stadi di amplificazione, condizionamento del segnale, ecc.). Recentemente, Hutzler et al. (Hutzler et al., 2006) hanno presentato un chip accoppiato a fettine di ippocampo costituito da circa 16.000
elettrodi con una separazione interelettrodo di $7.8 \mu \mathrm{~m}$ e una velocità di acquisizione di c.a. 2 kHz . Con questo dispositivo possono essere acquisite sequenze di immagini che riflettono l'attività elettrica della fettina. Il vantaggio principale è quello di ottenere una mappa spazialmente dettagliata dell'attività elettrica (registrando Local Field Potential $-\mathrm{LFP}^{2}$), lo svantaggio principale risiede nella risoluzione temporale abbastanza limitata (l'attività spiking non può essere risolta) e il livello di rumore elevato ($50-150 \mu \mathrm{~V}$ rms). Più di recente, Frey et al. (Frey et al., 2009) hanno proposto un nuovo chip caratterizzato da circa 11.000 microelettrodi e una risoluzione spaziale molto alta (3500 electrode/ mm^{2}). Tuttavia, l'architettura del circuito integrato permette all'utente di selezionare solo un sottoinsieme di elettrodi (fino a 128), dal momento che ogni sito prescelto è attivamente collegato ad un amplificatore dedicato all'inizio dell'esperimento. Questa soluzione permette di ottenere prestazioni eccellenti in termini di rumore (grazie alla possibilità di integrare gli amplificatori su aree di grandi dimensioni) ma impedisce la possibilità di registrare da diverse migliaia di elettrodi e di acquisire, quindi, sequenze funzionali dell'attività globale di rete.
Infine, Berdondini et al. (Berdondini et al., 2009), in collaborazione con il gruppo di ricerca di Neuroingegneria e Bionanotecnologie dell'Università di Genova, hanno sviluppato un nuovo dispositivo basato su tecnologia CMOS e in particolare derivato dalla tecnologia APS (Active Pixel Sensor). Tale sistema permette la registrazione simultanea da 4096 microelettrodi-pixel con frequenza di campionamento di c.a. 8 KHz full frame e un livello di rumore di c.a. 20 $\mu \mathrm{V}$ rms). A titolo di esempio in figura 3.4 sono mostrati il sistema (nella sua versione commerciale) e una sequenza di immagini funzionali che rappresentano l'attività elettrofisiologica della rete.
Parallelamente, lo sviluppo di modelli neuronali in-vitro accopiati a dispositivi elettronici ha visto proposti, a partire

[^2]

FIGURA 3.4
Sistema di microelettrodi ad
alta densità. (A)
Sistema di misura
e chip (www.3brain.
com). (B) Sequenza
di immagini delle variazioni di potenziale misurato extracellularmente rappresentato in falsi colori.
dalla fine degli anni ${ }^{\prime} 70$, una varietà di modelli sperimentali che sono stati presentati e adattati ad essere utilizzati con le diverse tipologie di matrici di microelettrodi allo scopo di permettere nuove e più efficaci indagini in ambito neuroscientifico. In particolare, è necessario citare gli studi relativi alle "reti patternate" in cui la crescita di popolazioni neuronali non è lasciata esclusivamente alle capacità di auto organizzazione del sistema (neuroni che si connettono autonomamente a formare una rete apparentemente "random" ma ovviamente dotata di specifiche caratteristiche come vedremo nei paragrafi seguenti) ma risulta "guidata" in base a specifiche caratteristiche chimiche e/o meccaniche del substrato. Lo scopo di tali studi era quello di "progettare" sistemi bioartificiali in grado di svolgere compiti computazionali. Anche se è chiaro che occorre rivedere la nozione di "brain on a chip" o di "mind over metal" (cf. per esempio «The new scientist»: 12 febbraio 2002, pp.22-29) che ancora in tempi recenti ha solleticato la fantasia degli scienziati in merito alla possibilità di progettare sistemi ibridi intelligenti, l'opportunità di studiare i meccanismi di interazione tra struttura-topologia della rete e funzione trova un efficace modello sperimentale proprio nelle reti neuronali patternate. Come accennato in precedenza, la possibilità di progettare reti di neuroni dotate di una specifica architettura è stato un obiettivo fin dai primi e pionieristici lavori di Letourne-
au (Letourneau, 1975); a partire da quel primo tentativo, molti studi sono stati presentati nella letteratura scientifica, utilizzando e sviluppando via via nuovi metodi sempre più raffinati e specifici per la particolare applicazione. È stata utilizzata la modifica di superficie attraverso l'uso di silani (Georger et al., 1992), sono state introdotte tecniche fotoligrafiche (Torimitsu, 1990, Corey et al., 1996), litografia UV (Dulcey et al., 1991) e litografia soft (Branch et al., 1998). Le tecniche si sono poi ulteriormente raffinate scendendo a scale micrometriche e sub-micrometriche (Li et al., 2003, Park et al., 2006, Liu et al., 2008) fornendo buoni risultati su diverse scale di risoluzione. Nonostante ciò, la bassa densità delle colture realizzate ha spesso impedito di ottenere risultati convincenti dal punto di vista funzionale. Alcuni autori hanno utilizzato tecniche di patch-clamp per studiare la comunicazione in queste reti semplificate (Ma et al., 1998, Ravenscroft et al., 1998); altri hanno studiato la plasticità trovando meccanismi di modulazione a breve termine simile a quanto visto in fettine di cervello (Vogt et al., 2005). In anni più recenti, molti gruppi di ricerca hanno iniziato ad utilizzare tecniche di patterning accoppiate a matrici di microelettrodi per studiare la dinamica di tali reti in condizioni controllate e con architetture in parte pre-definite (Jun et al., 2007, Macis et al., 2007, Jungblut et al., 2009, Kang et al., 2009).
Nei paragrafi che seguono si presente-
ranno alcuni studi relativi alla caratterizzazione dinamica delle reti corticali in-vitro con riferimento alla topologia della rete e alla loro connettività. È convinzione degli autori che tali studi possano fornire utili elementi alla comprensione dei meccanismi alla base della computazione neuronale e della trasmissione dell'informazione. Quello che viene proposto è che lo studio dello sviluppo di tali reti in-vitro costituisca un interessante e, per certi aspetti unico, ambito sperimentale per indagare come i micro-circuiti neuronali si organizzino; come da questi emerga una certa dinamica (correlato elettrofisiologico); come questo costituisca il substrato materiale attraverso il quale il cervello elabora l'informazione.

3. Dinamica di reti corticali

Le reti di neuroni si sviluppano invitro modificando la loro attività spontanea a seconda dello stadio di maturazione (Van Pelt et al., 2004, Bologna et al., 2010). A partire dalla seconda settimana in coltura, gli "spike" (potenziali d'azione di singole cellule nervose) tendono a raggrupparsi in "burst" (sequenza di spike ravvicinata nel tempo), dando origine ad una attività che persiste per tutto il tempo di vita della rete e ne rappresenta lo stadio di maturità (Marom and Shahaf, 2002). Tale comportamento si ritrova sia in sistemi molto semplici,

FIGURA 3.5 - Modello della pila di sabbia: la distribuzione di probabilità della dimensione delle valanghe nel modello segue una legge di potenza (pannello a destra) e quindi presenta un andamento lineare in un grafico log-log.
come la sanguisuga o la lampreda, sia in colture dissociate di neuroni ippocampali o corticali provenienti da mammifero, con caratteristiche molto simili. Nel cervello maturo e intatto la presenza di bursting ritmico si manifesta a seguito di deprivazione sensoriale, durante il sonno (Krahe and Gabbiani, 2004) o in patologie come l'epilessia (Furshpan and Potter, 1989). Eytan e Marom (Eytan and Marom, 2006) hanno dimostrato le somiglianze tra la dinamica dei fenomeni di sincronizzazione della rete (i.e. network spike o network burst) in-vitro e le risposte selettive di alcune popolazioni registrate in-vivo da animali sottoposti a compiti di tipo sensoriale, motorio o cognitivo.
Come anticipato nell'introduzione, recenti studi teorici (De Arcangelis et al., 2006; Abbott and Rohrkemper, 2007) e sperimentali condotti su diversi modelli, quali fettine organotipiche o colture di neuroni corticali, hanno suggerito che tali periodi di aumentata attività possano essere definiti come "valanghe neuronali", caratterizzate da distribuzioni statistiche invarianti rispetto alla scala sia temporale che spaziale. I risultati di tali studi, ispirati alla teoria della Self Organized Criticality, introdotta da Per Bak alla fine degli anni ' 80 , suggeriscono che il cervello operi come un sistema critico auto-organizzato. Recentemente, le valanghe neuronali sono state individuate e caratterizzate anche nei sistemi in-vivo e in particolare su scimmia sveglia e co-
sciente (Plenz and Thiagarajan, 2007, Petermann et al., 2009, Hahn et al., 2010), confermando l'organizzazione "scaleinvariant" di questi pattern neuronali di attività sincrona. Un lavoro del 2011, infine, ha dimostrato che la presenza di valanghe neuronali con distribuzione "critica" è in grado di massimizzare la capacità e la trasmissione di informazione (Shew et al., 2011).
Nel seguito presentiamo alcuni risultati relativi alla caratterizzazione dinamica di popolazioni di neuroni in coltura durante lo sviluppo della rete seguendo il paradigma delle valanghe neuronali $(\mathrm{Pa}-$ squale et al., 2008).

Cervello, valanghe neuronali e Self

Organized Criticality. L'idea di base della Self-Organized Criticality (SOC) è che sistemi dinamici composti da molte unità possano evolvere, ossia si auto-organizzino, in uno stato critico, fortemente interattivo, nel quale una piccola perturbazione può portare ad eventi, chiamati valanghe, di qualsiasi dimensione.
Il sistema esibisce un comportamento di cosiddetto equilibrio "punteggiato" (punctuated equilibrium), nel quale periodi di stasi sono interrotti da burst intermittenti di attività. Questa concezione si oppone alla visione tradizionale, secondo la quale grandi sistemi dinamici sono sempre in equilibrio stabile e piccole perturbazioni a questo stato di equilibrio causano piccole deviazioni
che vengono infine dissipate. Ciò accade per sistemi lineari, nei quali grandi fluttuazioni si realizzano solo se molti eventi casuali spingono accidentalmente il sistema nella stessa direzione: questo fenomeno si verifica con una probabilità infinitesima; proprio perché la distribuzione delle fluttuazioni nei sistemi in equilibrio è di tipo gaussiano, i grandi eventi sono quasi completamente trascurati.
Nella realtà, però, si osserva che eventi grandi e catastrofici sono causati dalle stesse dinamiche che producono eventi piccoli e ordinari: Mandelbrot (Mandelbrot, 1963), durante i suoi studi di economia, trovò che la distribuzione di probabilità statistica dei grandi eventi è data dalla stessa funzione di distribuzione dei piccoli eventi, suggerendo un'origine comune. Tale distribuzione, nota come funzione di Pareto-Levy, decade come una legge di potenza. Mandelbrot (Mandelbrot, 1983) ha coniato il termine frattale per identificare un comportamento scale-free o a legge di potenza, sebbene non ne abbia studiato le origini dal punto di vista fisico.
Nel campo della geologia, è stato osservato che i terremoti seguono una funzione di distribuzione a legge di potenza nota come la legge di GutenbergRichter (Gutenberg and Richter, 1949). La probabilità di avere un terremoto di energia $E, P(E)$, è proporzionale a E^{-b}, dove b è un esponente caratteristico. Se riportata in un grafico bilogaritmico, questa legge di potenza appare come una retta, la cui pendenza vale -b . La presenza di una legge di potenza sembra essere garanzia di un fenomeno scale-free o di tipo frattale.

Il paradigma della pila di sabbia

 (sandpile model). Il modello canonico della SOC è un pila di sabbia (sandpile) sulla quale granelli di sabbia vengono fatti cadere in modo casuale. Tale modello è stato presentato per la prima volta da Bak, Tang e Wiesenfeld nel 1987 (Bak et al., 1987) ed è diventato il paradigma della SOC.Il modello rappresenta la seguente situazione. Si consideri una pila di sabbia su un tavolo, dove la sabbia viene aggiunta lentamente, a partire da una
configurazione completamente piatta. Questo sistema dinamico ha molti gradi di libertà, rappresentati dalla moltitudine dei granelli di sabbia. Lo stato iniziale rappresenta lo stato di equilibrio globale, con la minore energia. Mano a mano che si aggiungono granelli di sabbia, la pila diventa sempre più ripida e appuntita e cominciano a verificarsi piccole valanghe, in quanto la sabbia scivola lateralmente. L'aggiunta di un singolo granello di sabbia può provocare un piccolo disturbo locale, ma non accade nulla di catastrofico. Alla fine, la pila raggiunge uno stato stazionario dal punto di vista statistico, nel quale la quantità di sabbia aggiunta è bilanciata, in media, dalla quantità di sabbia che abbandona il sistema cadendo dai bordi del tavolo. In questo stato stazionario, si verificano valanghe di tutte le dimensioni, fino alla dimensione dell'intero sistema.
La dinamica della pila di sabbia è una dinamica globale ed essa si può considerare come un singolo sistema complesso piuttosto che una collezione di granelli di sabbia, ciascuno con una sua dinamica indipendente. In questa configurazione, l'aggiunta di un singolo granello di sabbia può causare senza distinzioni una valanga di dimensioni trascurabili o una valanga che coinvolge l'intero sistema. La risposta non è proporzionale alla variazione applicata.

Cervello e complessità. Ma come si colloca il cervello in questo scenario? Secondo il pensiero di Bak (Bak, 1996), a partire da uno stato iniziale con poca struttura di base, l'informazione sull'ambiente circostante viene codificata nel cervello per mezzo di un processo durante il quale esso si autoorganizza in uno stato critico. In analogia con la pila di sabbia e con la teoria del punctuated equilibrium, un "pensiero" può essere visto come una valanga di qualsiasi dimensione, innescata da una piccola perturbazione sotto forma di un'osservazione oppure di un altro pensiero.
Come sappiamo, il cervello contiene un numero inimmaginabile di neuroni, ciascuno dei quali è connesso a migliaia di altri. In che modo questa miriade di cel-
lule nervose lavora insieme per formare quel processo emergente che è chiamato pensiero? Ł̀ un fatto ormai noto che il nostro cervello alla nascita non si presenta già pronto e cablato, con tutte le connessioni predeterminate dall'evoluzione biologica e tutti i possibili scenari codificati all'interno del progetto del DNA, ma la sua funzionalità si evolve durante la vita di un individuo. Questo implica che anche la sua struttura deve auto-organizzarsi piuttosto che seguire un progetto prefissato, come accade, ad esempio, per un computer o per un qualsiasi altro manufatto.
Esistono almeno due motivazioni importanti a sostegno dellipotesi che il cervello sia un sistema critico auto-organizzato. In primo luogo, si consideri un cervello che sia esposto ad un qualche segnale proveniente dall'esterno, ad esempio un qualsiasi input sensoriale. Tale segnale di input dovrebbe essere in grado di avere accesso a tutte le informazioni immagazzinate nel cervello: a causa di ciò, il sistema non potrà essere subcritico, nel qual caso avrà accesso soltanto ad una parte limitata dell'informazione. Per la ragione contraria, il sistema non potrà essere supercritico, poiché qualsiasi input causerebbe un processo di diffusione dell'informazione esplosivo che lo metterebbe in correlazione con qualsiasi tipo di informazione presente nel cervello.
In secondo luogo, si consideri un singolo neurone presente in una qualche regione della corteccia cerebrale e un altro neurone di output posto ad una certa distanza. Cambiando le proprietà del primo neurone, ad esempio aumentando o diminuendo la sua forza di connessione con un neurone vicino, dovrebbe essere possibile modificare l'attività del secondo neurone di output in un qualche modo, altrimenti quel neurone non avrebbe nessuna funzione significativa. Se il cervello si trovasse in uno stato subcritico, questo cambiamento avrebbe soltanto un effetto locale. Se il cervello si trovasse invece in uno stato supercritico, con neuroni che sparano in maniera eccessiva e scoordinata, non sarebbe possibile comunicare con il neurone di output e modificare il suo segnale nella maniera corretta. È,
quindi, plausibile che il cervello operi in uno stato critico (o vicino alla criticità) nel quale l'informazione è appena in grado di propagarsi. In questo stato il sistema ha un'altissima sensibilità anche alle piccole variazioni: un input minimo può causare valanghe di tutte le dimensioni (esattamente come succede per una pila di sabbia). Il problema è capire come le valanghe siano in grado di connettere i vari input con gli output corretti e, inoltre, come il cervello si autoorganizza in tale stato critico. Seguendo questa visione, è pertanto ragionevole coniare il termine valanghe neuronali.
Una valanga neuronale nella definizione proposta da Beggs e Plenz (Beggs and Plenz, 2003) consiste in una sequenza continua di attività che si diffonde in una certa popolazione di neuroni ed è preceduta e seguita da periodi silenti. Supponendo di suddividere il tratto di registrazione in finestre temporali di durata prefissata (bin), all'interno delle quali si considera al massimo un singolo spike, si può misurare la dimensione di una valanga (avalancbe size) come il numero totale di spike rilevati al suo interno e la durata di una valanga (avalanche lifetime) come il numero di bin necessario a coprirla interamente.
Un elettrodo si definisce attivo in un bin Δt se registra almeno uno spike all'interno di quella finestra temporale. In generale, nelle colture di neuroni dissociati si possono rilevare sia valanghe molto brevi, composte da un singolo evento su un singolo elettrodo, sia valanghe che comprendono qualche migliaio di spike e coinvolgono tutta la matrice di microelettrodi. Di conseguenza, data la definizione di valanga, si può definire la dimensione di una valanga (avalanche size) sia come il numero di eventi o potenziali d'azione rilevati all'interno della valanga, sia come il numero di elettrodi attivati almeno una volta all'interno della valanga stessa; la durata di una valanga (avalanche lifetime) può essere espressa, invece, sia in unità di tempo che in numero di bin. I risultati che saranno presentati nei successivi paragrafi faranno riferimento sempre alla durata della valanga espressa in numero di bin.
Il funzionamento dell'algoritmo per il
rilevamento delle valanghe è schematizzato in figura 3.6: stabilita la larghezza del bin di osservazione, si analizza ciascun treno di spike secondo finestre temporali di pari durata, identificando i frame in cui non si rileva attività su alcun elettrodo della matrice (evidenziati in figura 3.6). I blank frame, seguiti da una sequenza di attività, rappresentano l'inizio di una valanga, mentre quelli preceduti da una sequenza di attività ne segnano la fine.
Una volta individuate le valanghe, se ne calcola la dimensione e la durata in base alle definizioni date precedentemente e si costruiscono gli istogrammi delle distribuzioni di probabilità, normalizzati sul numero totale di valanghe. Tali istogrammi sono rappresentati generalmente in scala bilogaritmica, per mettere in evidenza se la distribuzione segue una legge di potenza. La distribuzione di probabilità della dimensione delle valanghe ha rivelato una semplice relazione lineare in coordinate bilogaritmiche, segno della presenza di un andamento a legge di potenza: dove n è la dimensione della valanga e $P(n)$ la probabilità di osservare una valanga di dimensione n; α è l'esponente della legge di potenza e fornisce la pendenza della retta in scala bilogaritmica. Il punto di cutoff si manifesta in corrispondenza del massimo numero di elettrodi presente sulla matrice, segno del fatto che la maggior
parte degli elettrodi viene attivata una sola volta all'interno di una valanga. Il valore ottimale della durata del bin utilizzato per rilevare le valanghe è stato stimato in base a considerazioni sull'intervallo medio fra eventi consecutivi registrati su elettrodi diversi e sulla velocità media di propagazione dell'attività elettrica. Anche la distribuzione di probabilità della durata delle valanghe segue una legge di potenza, ma con un cutoff di tipo esponenziale.
Per valutare la capacità delle colture di neuroni dissociati di auto-organizzarsi raggiungendo uno stato critico durante il loro sviluppo, è stata monitorata la loro attività elettrofisiologica dalla prima alla sesta settimana in vitro e in particolare tra i DIV (Days In Vitro - giorni in coltura) 21 e 42, cioè nella fase matura dello sviluppo. Una volta che una cultura ha raggiunto la fase matura, questa mostra un ben definito comportamento (critico o quasi-critico, subcritico o supercritico). Sebbene non tutte le culture osservate condividano un percorso comune di sviluppo, esse comunque dimostrano che possono avvicinarsi ad uno stato critico nella fase matura, dando vita a eventi che corrispondono alla descrizione delle valanghe neuronali. I risultati riportati sono relativi a culture la cui attività elettrofisiologica è stata registrata durante la quarta settimana in vitro. Relativa-
mente alle colture che hanno mostrato un comportamento critico, è stata ottenuta una pendenza media di $-1.60 \pm$ 0.09 (media \pm deviazione standard) per la dimensione della valanga e $-1.86 \pm$ 0,13 per il tempo di vita della valanga ,riproponendo risultati simili rispetto a quanto ottenuto nel lavoro originale di Beggs e Plenz del 2003. Altre colture hanno mostrato un comportamento sub-critico o super-critico deviando fortemente da una legge di potenza e dall'esponente teorico di -1.5.
La figura 3.7 mostra i risultati delle analisi delle valanghe applicate a tre esperimenti rappresentativi durante la quarta settimana in vitro, che mostrano i diversi stati dinamici presenti in questa tipologia di reti: queste curve mostrano una progressione da una distribuzione marcatamente subcritica (\#3) verso una marcatamente supercritica (\#6), passando attraverso una distribuzione (\#4) che si avvicina alla situazione critica sia per le dimensioni delle valanghe che la durata.
Questi risultati hanno dunque evidenziato come sia possibile osservare stati critici nelle colture di neuroni corticali e come tale criticità sia associabile a una organizzazione elettrofisiologica della rete tale per cui debba esserci un certo rapporto tra "random spike" e "burst" (attività sincrona). La domanda che rimane ancora irrisolta è perché talune

FIGURA 3.6-Schematizzazione dell'algoritmo per il rilevamento delle valanghe. Le valanghe sono definite come sequenze continue di attività, precedute e seguite da intevalli temporali senza alcuna attività su tutta la matrice di microelettrodi. I frame di inattività (blank frame) sono evidenziati tramite rettangoli, mentre le linee contrassegnate della lettera a rappresentano la scansione degli spike train secondo bin di durata prefissata. Per semplicità sono stati rappresentati solo 3 spike train, anche se l'operazione è eseguita su tutti e 60 i canali di registrazione del MEA. In questo esempio, la dimensione della prima valanga secondo la definizione 1 è 4, mentre secondo la definizione 2 essa vale 2; la durata è 2 bin, se espressa in numero di finestre temporali Δt, o altrimenti $2 \cdot \Delta t$ s, se espressa in unità di tempo.

FIGURA 3.7-Nelle culture mature si possono osservare diversi comportamenti dinamici, come esemplificato da tre culture. (A) Distribuzione delle dimensioni delle valanghe neuronali. (B) Distribuzioni dei tempi di vita delle valanghe neuronali. Entrambi gli istogrammi sono confrontati con leggi di potenza i cui esponenti sono 1.5 e 2 , rispettivamente per le dimensioni e per i tempi di vita. (Adattato da «Neuroscience», 2008; 153, 1354-1369)
reti evolvano verso stati critici, piuttosto che subcritici o supercritici. Tra le possibili ragioni è ipotizzabile che la connettività funzionale della rete evolva (per qualche fattore legato alla composizione dei tipi di neuroni presenti nella rete e/o alla loro densità) verso una topologia diversa e che proprio questa diversa organizzazione rifletta poi una dinamica differente. Per studiare tale dipendenza, l'utilizzo di modelli computazionali di reti a grande dimensionalità risulta attualmente lo strumento più indicato. Non tratteremo in questa sede di questi modelli, ma ci limitiamo ad osservare come l'interazione tra la dinamica del sistema e la possibile architettura funzionale che il sistema stesso mostra sono fortemente dipendenti. A tale proposito nell'ambito delle neuroscienze computazionali la caratterizzazione dell'interazione tra struttura-topologia e dinamica del sistema sta diventando uno degli argomenti di maggior interesse nella comunità scientifica. Come anticipato nell'introduzione, affronteremo nel prossimo paragrafo i metodi che ci permettono di caratterizzare una rete di neuroni (sia in-vivo che in-vitro) a partire da alcuni semplici concetti che fanno riferimento alla teoria dei grafi.

4. Reti di neuroni e connettività funzionale

In questo paragrafo si presentano in primo luogo i concetti di base relativi alla teoria delle reti complesse, definendo i parametri di base ed introducendo i concetti fondamentali per la descrizione delle reti dal punto di vista topologico. Quindi, si presenteranno una serie di risultati metodologico-sperimentali volti ad individuare la connettività funzionale-effettiva all'interno di reti neuronali accoppiate a matrici di microelettrodi.

Teoria delle reti complesse: definizioni di base. In questo ambito, una rete è definita da una serie di nodi (i quali costituiscono gli elementi della rete stessa) e le connessioni (archi) che collegano i nodi ne definiscono la struttura. Una volta che si è costruita e/o ricavata la struttura della rete, è possibile utilizzare una serie di parametri per descriverne le proprietà. I principali parametri utilizzati e utili alla descrizione di reti di neuroni sono brevemente descritti nel seguito in modo intuitivo e senza ricorrere a formalismi matematici (per questo si rimanda ai testi di riferimento come ad esempio: Diestel, 2010).

Grado di connettività di un nodo (k): il grado k di un nodo corrisponde al numero totale delle sue connessioni (il numero dei suoi primi vicini connessi, si veda figura 3.8 pannello di sinistra)
Lunghezza di cammino minimo (δ : dati due nodi, il cammino minimo l, è definito come il numero minimo di connessioni che unisce i due nodi. Tale distanza non ha nessun significato spaziale. Mentre il numero totale di nodi (N) definisce la dimensione della rete, il minimo cammino medio stima la dimensione lineare della rete, cioè quanto la rete è compatta.
Coefficiente di clustering (c): dato un nodo con un grado di connettività k, il coefficiente di clustering misura la frazione di connettività tra i primi k vicini (figura 3.8 pannello di destra) dove il numero totale di possibili connessioni è $[k(k-1) / 2)]$. Il coefficiente è utilizzato per stimare la densità di connessioni locali tra gruppi di neuroni che condividono gli stessi vicini. Il coefficiente di clustering della rete è il valore medio dei coefficienti dei nodi della rete.
Il grado di distribuzione di una rete $P(k)$, è la distribuzione di probabilità che descrive la probabilità che un nodo scelto a caso nella rete abbia un certo grado di connettività k. La distribuzione di connettività $P(k)$ è un parametro che viene utilizzato per caratterizzare le reti e in

FIGURA 3.8 - Rappresentazione di una rete come grafo. Pannello di sinistra: nell'esempio è mostrata una semplice rete in cui si mostra il grado di connettività per 2 nodi, i.e. il numero di connessioni ($k=2, k=4$). La distanza tra due nodi indicati dalle frecce, definisce il minimo cammino (rispettivamente $l=2, l=3$). Si noti che nel secondo caso esistono due possibili percorsi minimi (linea tratteggiata). Pannello di destra: nell'esempio il nodo centrale ha un grado di connettività pari a 4 nella rete con una sola connessione tra i k nodi su un totale di 6 possibili connessioni. Il coefficiente di clustering è pertanto $c=1 / 6$. (Adattato da «Trends in Neurosciences», 2011; 34(5):225-36)
figura 3.9, sono mostrate le principali strutture topologiche di reti con diverse $P(k)$ e di particolare interesse neuroscientifico (small-world e scale-free).
Reti scale-free: la probabilità che un nodo abbia k connessioni è descritto da una legge di potenza () . Dato che il grado k può estendersi attraverso diversi ordini di grandezza, le reti scale-free non hanno una scala caratteristica (a differenza delle reti" "random" il cui grado di connettività medio è strettamente legato alla dimensione della rete). Le reti scalefree includono nodi chiamati "hub", cioè nodi rari e con un grado di connettività k molto elevato. Questi nodi possono avere un impatto notevole sulla dinamica della rete (Bonifazi et al., 2009). Molte reti reali, incluse le reti di neuroni, mostrano una topologia scale free con un esponente γ compreso tra 1 e 3 .
Reti regolari: in una rete regolare, tutti i nodi della rete hanno lo stesso numero di vicini e la rete ha una disposizione ordinata. Nell'esempio in figura 3.9, è mostrato un reticolo regolare con grado di connettività pari a 4 . I reticoli regolari possiedono un'alta densità di connessioni tra vicini e sono, quindi, caratterizzati da un elevato coefficiente di clustering. Il minimo cammino medio cresce come
una potenza rispetto al numero dei nodi (N).
Reti random: le reti random sono solitamente ottenute distribuendo casualmente m connessioni su N nodi (figura 3.9b a destra). Come risultato del processo, i nodi possono avere un diverso grado di connettività e la probabilità che un nodo abbia grado di connettività k è rappresentato da una distribuzione di Poisson dove $k=m / N$ è il grado di connettività medio della rete. Questo tipo di reti sono spesso indicate come reti di Poisson (o grafi di Erdos-Reny dagli autori che hanno introdotto questo tipo di grafo). Il minimo cammino medio cresce come il logaritmo rispetto al numero di nodi (N). Le reti casuali hanno poche connessioni locali e quindi un coefficiente di clustering piuttosto basso.
Reti small-world: sono reti che condividono le stesse caratteristiche delle reti regolari e random, costituendo una sorta di modello intermedio tra questi due modelli ideali (figura 3.9b). Infatti, le reti small world presentano una connettività locale marcata, come le reti regolari, (csmall \sim cregular) e un percorso minimo medio simile a quello delle reti casuali (lsmall \sim lrandom). Reti small world possono essere ottenute introducendo alcu-
ne connessioni casuali in un reticolo regolare. Queste connessioni casuali non interferiscono con la connettività locale della rete (con il coefficiente di clustering) ma accorciano la distanza tra nodi precedentemente distanti (riducono il percorso minimo tra i nodi). In molte reti neuronali reali si sono evidenziate proprietà di tipo small world. È interessante notare come infine è possibile individuare reti (anche a livello di reti neuronali biologiche) che abbiano sia proprietà small worls che scale free contemporaneamente.

Tipo di connessioni e stima della connettività. Molti sistemi neuronali reali presentano caratteristiche tipiche delle reti scale-free ovvero mostrano proprietà di tipo legge di potenza. Il concetto di valanghe neuronali e la distribuzione della probabilità della dimensione di valanga, secondo una legge di potenza, possono indicare una topologia che abbia caratteristiche di tipo scale-free. In ambito sperimentale, il ruolo di possibili neuroni hub è stato studiato e investigato in diversi modelli sperimentali (Sporns et al., 2007) e sembra che questo tipo di neuroni svolga un ruolo centrale per quanto riguarda la sincronizzazione della rete e
la trasmissione rapida dell'informazione. Gli altri parametri che abbiamo introdotto per caratterizzare le reti di neuroni (una volta identificate le connessioni) sono quelli di minimo percorso medio e di coefficiente di clustering della rete. In studi sperimentali si sono individuate topologie di tipo small world (Shefi et al., 2002, Sporns and Zwi, 2004) che sembrano rispondere ai requisiti di segregare funzionalmente l'attività di rete (c elevato) garantendo al tempo stesso l'integrazione funzionale con altre aree della rete (minimo percorso medio simile alle reti casuali). Vediamo ora nello specifico come sia possibile definire una rete secondo la teoria dei grafi nell'ambito delle reti neuronali biologiche.
Inizialmente la teoria dei grafi, grazie soprattutto ai lavori del gruppo di Sporns (Sporns et al., 2005), è stata applicata per esaminare i pattern di connettività tra aree cerebrali a scale macroscopiche sia su gatto e scimmia, utilizzando correlati elettrofisiologici (Sporns and Kotter, 2004), sia sull'uomo attraverso dati di risonanza magnetica funzionale e EEG (Achard et al., 2006). Più di recente questi concetti sono stati utilizzati anche nella descrizione di microcircuiti funzionali a livello di popolazioni neuronali (Yu et al., 2008). È chiaro, infatti, come l'applicazione della teoria dei grafi dipenda dalla scala di indagine, ovvero che i nodi della rete possano rappresentare: singoli neuroni, piccole popolazioni neuronali o aree del cervello (cf. figura 3.10). Un altro elemento fondamentale
è come vengono definite-stimate le connessioni tra i nodi. Anche in questo caso la definizione discende dalla tipologia di misura che viene effettuata e dalla scala di osservazione. La natura delle connessioni tra 1 nodi può essere di tipo strutturale (reali connessioni sinaptiche osservate morfologicamente) o dinami-co-funzionale (correlazioni tra eventi di tipo spike o altro). La figura 3.10 mostra come sia possibile attribuire significati sostanzialmente diversi al concetto di nodo della rete (figura 3.10a) e come si possano costruire-stimare connessioni partendo dalla dinamica del sistema (segnali di diverso tipo quali BOLD^{3}, EEG, LFP, spike) per ottenere una rete costituita da connessioni di tipo funzionale. Per meglio comprendere le tipologie di connessioni che possono essere stimate in una rete di neuroni, possiamo distinuguere tra tre diversi livelli di descrizione che riflettono diversi livelli di indagine: anatomico, funzionale ed effettivo (cf. figura 3.10).
La conne1tività di tipo anatomico indica una connessione fisica (i.e., una sinapsi chimica o elettrica) tra due nodi della rete (figura 3.11a) mentre la connettività funzionale indica una dipendenza statistica tra le attività (la dinamica) dei due nodi senza nessuna assunzione di come questi nodi possano essere connessi o come queste correlazioni siano mediate. Due neuroni risultano pertanto funzionalmente connessi, se possiamo predire l'attività di uno dei due neuroni sulla base dell'attività dell'altro neurone.

La connettività funzionale non implica però necessariamente una relazione causale: se due neuroni A e B sono temporalmente correlati questo non significa necessariamente che l'attivazione del neurone A è richiesta perché il neurone B si attivi o che stimolando il neurone A si attivi di conseguenza il neurone B. Per esempio, la correlazione può essere mediata dall'instaurarsi di oscillazioni a frequenze specifiche che inducano correlazioni anche su distanze non compatibili con la propagazione del segnale all'interno della rete.
Un caso specifico di connettività funzionale è quello indicato come connettività efficace. In questo caso una connessione è efficace quando un nodo della rete influenza direttamente un altro nodo attraverso una relazione causale tra le attività dei due nodi. Per esempio, l'attività elettrofisiologica (spiking) di un neurone A determina l'attivazione di un altro neurone B attraverso una connessione mono o poli-sinaptica. Si possono individuare diverse forme di interazionemodulazione causale come eccitazione, inibizione, modulazione del firing rate, ecc.). La connettività efficace può essere rivelata perturbando l'attività di uno dei due neuroni (per esempio tramite stimolazione elettrica) e misurando le variazioni di attività dell'altro neurone (figura 3.11c). È chiaro come la connettività anatomico-strutturale giochi un ruolo chiave soprattutto nella connettività efficace, determinando quali connessioni possano o non possano esistere-sussi-

FIGURA 3.9-Le due principali topologie di rete che si ritrovano comunemente a livello di sistemi biologici (come le reti neuronali) sono: (a) reti scale free e (b) reti small world. Le reti small world sono in qualche modo a metà strada tra le reti regolari e le reti casuali. È inoltre possibile individuare reti con caratteristiche sia small world che scale free. (Adattato da «Trends in Neurosciences», 2011; 34(5):225-36)

[^3]stere da un punto di vista fisiologico. Da quanto fin qui introdotto risulta anche chiaro come sia rilevante definire la direzionalità delle connessioni producendo un grafo orientato. La connettività efficace viene rappresentata con connesioni direzionali che indicano appunto la direzione del flusso informativo (e.g., connessione da neurone pre a post-si-
naptico) anche nel caso in cui non sia presente una connessione diretta, ma si attivi una catena di connessioni tra due neuroni (cf. figura 3.11c)

Stima delle mappe di connettività da dati sperimentali. Metodi basati sulla cross-correlazione tra segnali e tecniche derivate dalla teoria dell'informazione
(Rieke et al., 1997) sono quindi utilizzati per costruire le mappe di connettività funzionale dai dati sperimentali ottenuti tramite la registrazione di attività elettrofisiologica spontanea di reti corticali accoppiate a matrici di microelettrodi. Utilizzando diverse soglie (sui diversi parametri) si possono identificare le connessioni più forti e quindi rappresentare

FIGURA 3.10 - Applicazione della teoria dei grafi a sistemi neuronali. (a) Rappresentazione schematica di una rete di neuroni dove i nodi possono rappresentare differenti entità di tipo neuronale (e.g., spine, singoli neuroni, insiemi cellulari) e le connessioni possono rappresentare diverse modalità di comunicazione (e.g., sinapsi chimiche, sinapsi elettriche). La dinamica della rete è stimata attraverso varie misure che caratterizzano la variazione di "attività" in funzione del tempo (e.g., potenziali d'azione, EEG, segnali BOLD). (b) Topologie diverse e in particolare di tipo scalefree sembrano trovare riscontro nelle architetture funzionali a diversi livelli di scala. Su scala macrosopica le immagini fMRI permettono di individuare connessioni anche tra aree cerebrali distanti, evidenziando eventuali regioni hub in cui il grado di connettività risulta particolarmente elevato. Su scala microscopica è possibile stimare la connettività funzionale tra singoli neuroni attraverso misure di concentrazione di calcio. In questo caso è possibile individuare microcircuiti e identificare neuroni hub. (Adattato da «Trends in Neurosciences», 2011; 34(5):225-36)

FIGURA 3.11 - Illustrazione schematica delle tre principali tipologie di connettività utili a descrivere le connessioni in una rete neuronale reale. (Adattato da «Trends in Neurosciences», 2011; 34(5):225-36)
mappe (grafi) con diverso numero di connessioni eventualmente direzionali. In figura 3.12 sono mostrate alcune mappe di connettività ricavate tramite algoritmi di cross-correlazione. I dati fanno riferimento ad una rete di neuroni la cui attività viene monitorata per periodi di 20 minuti a partire dalla quarta settimana di coltura (rete in fase matura) in cui popolazioni di neuroni a bassa densità (poche centinaia di cellule per mm^{2}) si sviluppano su substrati costituiti da matrici di elettrodi ad alta densità. Per chiarezza nel mostrare le mappe ci si è limitati al massimo alle prime 100 connessioni più significative. Le mappe mostrate in figura 3.12 sono sovrapposte ad immagini in fluorescenza ed evidenziano come esista un correlato con la struttura della rete. In figura (in particolare nel panel di sinistra) possiamo notare come le connessioni siano direzionali e come si riescano ad evidenziare dei veri e propri percorsi sinaptici.
Questo tipo di dettaglio è reso possibile proprio dall'utilizzo di matrici ad alta densità che permettono una risoluzione spaziale oggi non raggiungibile con i sistemi commerciali convenzionali. I chip mostrati in figura 3.4 (ed utilizzati per
ricavare le mappe di figura 3.12) presentano le caratterstiche adeguate ($20 \mu \mathrm{~m}$ di lato per elettrodo e spaziatura di $20 \mu \mathrm{~m}$) per permettere una registrazione che, in condizioni di coltura adeguate, garantisca il monitoraggio di tutti i neuroni coinvolti nella rete.

5. Conclusioni e prospettive future

Gli studi relativi all'interazione tra struttura e funzione, tra topologia e dinamica della rete stanno in questi ultimi anni attirando l'interesse di molti studiosi appartenenti a diverse discipline. Gli studi sperimentali stanno crescendo grazie a nuove tecniche e a nuovi sistemi tecnologici che permettono l'accesso a dettagli (morfologici, funzionali) fino a poco tempo fa inimmaginabili. Queste nuove tecnologie producono però un'enorme quantità di dati. Si pensi, ad esempio, a cosa significhi registrare per qualche ora da qualche migliaio di canali l'attività elettrofisiologica di un sistema neuronale (corteccia di mammifero) alla frequenza
di 10 KHz per canale (si consideri che 10 minuti di acquisizione corrispondono a circa 50 Gb di dati!). Questi dati, uniti a dati morfologici (per esempio da immagini in immunofluorescenza), costituiscono sicuramente un formidabile strumento per comprendere i meccanismi alla base della computazione neurale, ma necessitano di adeguate metodiche e di strumenti di calcolo di grandi capacità. L'interazione tra scienziati teorici e sperimentali dovrà essere sempre più stretta e l'utilizzo di modelli matematici sempre più adeguato a rispondere e supportare i quesiti scientifici che via via verranno posti. A proposito dei temi trattati in questo capitolo, si possono individuare alcune domande che impegneranno nel prossimo futuro la comunità scientifica come ben evidenziato in un recente articolo di review da Bonifazi et al. (Feldt et al., 2011).
A che livello si gioca l'interazione tra attività elettrica delle cellule e delle reti (correlato elettrofisiologico) e la struttura della rete?
La capacità delle singole cellule di influenzare la dinamica di rete è relativa alla struttura anatomico-topologica della rete o ci sono altri fattori coinvolti?

FIGURA 3.12 - Mappe di connettività effettiva. Mappe di connettività ottenute su una rete di neuroni a bassa densità accoppiata ad una matrice di microelettrodi ad alta densità spaziale. Nel pannello di sinistra sono visibili le connessioni, i corpi cellulari e le arborizzazioni neuronali che formano i collegamenti. Nel pannello di destra è visualizzata una regione particolare della rete per permettere l'identificazione visiva di piccoli gruppi di neuroni e delle loro connessioni (si notino le frecce che indicano la direzione verso la quale si propaga l'informazione). I quadrati bianchi indicano gli elettrodi della matrice dalla quale si misura l'attività elettrica.

In quali condizioni studiare la connettività funzionale-effettiva può produrre conoscenza sulla connettività strutturale sottostante o viceversa?
Esistono specifici compiti cerebrali associati a specifici pattern di connettività funzionale a livello di microcircuiti? Quali sono le implicazioni rispetto alla codifica dell'informazione nel cervello? In quali regioni del cervello sono presenti i neuroni hub (oltre che nell'ippocampo)? Qual è la loro funzione principale
e quali le caratteristiche identificative di tali neuroni? Che impatto hanno questi particolari neuroni sulla trasmissione e l'elaborazione dell'informazione?

Queste e altre domande possono e potranno essere utilmente affrontate studiando i sistemi neuronali a diversi livelli di scala (dal nano-micro al macro), attraverso modelli sintetici e modelli sperimentali in-vitro. Tutto questo al fine poi di trasferire questa conoscenza ai sistemi
in-vivo per poter meglio caratterizzare e comprendere quei fenomeni che stanno alla base delle proprietà computazionali del cervello di un organismo comples-
so.

Indicazioni bibliografiche

Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, smallworld human brain functional network with highly connected association cortical hubs. J Neurosci 26:63-72.
Bak P (1996) How nature works: the science of selforganized criticality. New York: Copernicus Press. Bak P, Tang C, Wiesenfeld K (1987) Self-Organized Criticality: an explanation of $1 /$ f noise. Phys Rev Lett 59:381-384.
Bak P, Tang C, Wiesenfeld K (1988) Self-Organized Criticality. Physical Review A 38:364-374.
Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits. The Journal of Neuroscience 23:11167-11177.
Beggs JM, Plenz D (2004) Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. The Journal
of Neuroscience 24:5216-5229.
Berdondini L, Imfeld K, Maccione A, Tedesco M, Neukom S, Koudelka-Hep M, Martinoia S (2009) Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip 9:2644-2651.
Bologna LL, Nieus T, Tedesco M, Chiappalone M, Benfenati F, Martinoia S (2010) Low-frequency stimulation enhances burst activity in cortical cultures during development. Neuroscience.
Bonifazi P, Goldin M, Picardo MA, Jorquera I, Cattani A, Bianconi G, Represa A, Ben-Ari Y, Cossart R (2009) GABAergic hub neurons orchestrate synchrony in developing hippocampal networks. Science 326:1419-1424.
Bonifazi P, Ruaro ME, Torre V (2005) Statistical properties of information processing in neuronal
networks. Eur J Neurosci 22:2953-2964.
Branch DW, Corey JM, Weyhenmeyer JA, Brewer GJ, Wheeler BC (1998) Microstamp patterns of biomolecules for high-resolution neuronal networks. Med Biol Eng Comput 36:135-141. Brewer GJ, Boehler MD, Ide AN, Wheeler BC (2009) Chronic electrical stimulation of cultured hippocampal networks increases spontaneous spike rates. J Neurosci Methods 184:104-109.
Buzsaki G (2004) Large-scale recording of neuronal ensembles. Nature Neuroscience 7:6.
Chapin JK, Moxon KA, Markowitz RS, Nicolelis MAL (1999) Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nature Neuroscience 2:664-670.
Chiappalone M, Bove M, Vato A, Tedesco M, Martinoia S (2006) Dissociated cortical networks show spontaneously correlated activity patterns during in
vitro development. Brain Research 1093:41-53. Chiappalone M, Massobrio P, Martinoia S (2008) Network plasticity in cortical assemblies. European Journal of Neuroscience 28:221-237.
Chiappalone M, Vato A, Berdondini L, Koudelka M, Martinoia S (2007) Network dynamics and synchronous activity in cultured cortical neurons. Int J Neural Syst 17:87-103.
Corey JM, Brewer GJ, Wheeler BC (1996) Micrometer resolution silane-based patterning of hippocampal neurons: critical variables in photoresist and laser ablation process for substrate fabrication. IEEE Trans Biomed Eng 43:944-955.
Diestel R (2010) Graph Theory. Springer-Verlag, Heidelberg.
Dulcey CS, George JM, Krauthamer V, Stenger DA, Fare TL, Calvert JM (1991) Deep UV photochemistry of chemisorbed monolayers: patterned coplanar molecules assemblies. Science 252:551-554.
Eytan D, Marom S (2006) Dynamics and effective topology underlying synchronization in networks of cortical neurons. J Neurosci 26:8465-8476.
Feldt S, Bonifazi P, Cossart R (2011) Dissecting functional connectivity of neuronal microcircuits: experimental and theoretical insight. Trends in Neurosciences 34:225-236.
Frey U, Egert U, Heer F, Hafizovic S, Hierlemann A (2009) Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices. Biosens Bioelectron 24:2191-2198.
Fromherz P, Offenhausser A, Vetter T, Weiss JA (1991) Neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor. Science 252:1290-1293.
Furshpan EJ, Potter DD (1989) Seizure-like activity and cellular damage in rat hippocampal neurons in cell culture. Neuron 3:199-207.
Georger JH, Stenger DA, Rudolph AS, Hickman JJ, Dulcey CS, Fare CS (1992) Coplanar patterns of selfassembled monolayers for selective cell-adhesion and outgrowth. Thin solid films 210:716-719.
Gross GW, Williams AN, Lucas JH (1982) Recording of spontaneous activity with photoetched microelectrode surfaces from mouse spinal neurons in culture. J Neurosci Meth 5:13-22.
Hahn G, Petermann T, Havenith MN, Yu S, Singer W, Plenz D, Nikolic D (2010) Neuronal avalanches in spontaneous activity in vivo. Journal of Neurophysiology 104():3312-3322.
Hai A, Shappir J, Spira ME (2010) In-cell recordings by extracellular microelectrodes. Nature Methods 7:200-202.
Hebb DO (1949) Organization of behavior. New York: John Wiley \& Sons.
Heuschkel MO, Fejtl M, Raggenbass M, Bertrand D, Renaud P (2002) A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices. J Neurosci Methods 114:135-148.
Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:164-171.
Hutzler M, Lambacher A, Eversmann B, Jenkner M,
Thewes R, Fromherz P (2006) High-resolution multitransistor array recording of electrical field potentials in cultured brain slices. J Neurophysiology 96:16381645.

Jun SB, Hynd MR, Dowell-Mesfin N, Smith KL, Turner JN, Shain W, Kim SJ (2007) Low-density neuronal networks cultured using patterned poly-l-lysine on microelectrode arrays. J Neurosci Methods 160:317-326 Jungblut M, Knoll W, Thielemann C, Pottek M (2009) Triangular neuronal networks on microelectrode arrays: an approach to improve the properties of lowdensity networks for extracellular reco'rding. Biomed

Microdevices 11:1269-1278.
Kang G, Lee J-H, Lee C-S, Nam Y (2009) Agarose microwell based neuronal micro-circuit arrays on microelectrode arrays for high throughput drug testing. Lab Chip 9:3236-3242.
Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW (2008) Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol 3:434-439.
Kermany E, Gal A, Lyakhov V, Meir R, Marom S, Eytan D (2010) Tradeoffs and constraints on neural representation in networks of cortical neurons. J Neurosci 30:9588-9596.
Krahe R, Gabbiani F (2004) Burst firing in sensory systems. Nat Rev Neurosci 5:13-23.
Kraus T, Verpoorte E, Linder V, Franks W, Hierlemann A, Heer F, Hafizovic S, Fujii T, de Rooij NF, Koster S (2006) Characterization of a microfluidic dispensing system for localised stimulation of cellular networks. Lab Chip 6:218-229.
Letourneau P (1975) Possible roles of cell to substratum adhesion in neuronal morphogenesis. Dev Biol 44:77-91.
Li N, Tourovskaia A, Folch A (2003) Biology on a chip: microfabrication for studying the behavior of cultured cells. Critical Reviews in Biomedical Engineering 31:423-488.
Lichtman J, Livet J, Sanes J (2008) A technicolour approach to the connectome. Nat Rev Neurosci 9:417422.

Liu B, Ma J, Gao E, He Y, Cui F, Xu Q (2008) Development of an artificial neuronal network with postmitotic rat fetal hippocampal cells by polyethylenimine. Biosens Bioelectron 23:1221-1228.
Luo L, Callaway EM, Svoboda K (2008) Genetic dissection of neural circuits. Neuron 57:634-660.
Ma W, Liu QY, Jung D, Manos P, Pancrazio JJ, Schaffner AE (1998) Central neuronal synapse formation on micropatterned surfaces. Dev Brain Research 111:231-243.
Macis E, Tedesco M, Massobrio P, Raiteri R, Martinoia S (2007) An automated microdrop delivery system for neuronal network patterning on microelectrode arrays. J Neurosci Methods 161:88-95.
Maher MP, Pine J, Wright J, Tai YC (1999) The neurochip: a new multielectrode device for stimulating and recording from cultured neurons. J Neurosci Methods 87:45-56.
Marom S, Shahaf G (2002) Development, learning and memory in large random networks of cortical neurons: lessons beyond anatomy. Quarterly Reviews of Biophysics 35:63-87.
Martinoia S, Bonzano L, Chiappalone M, Tedesco M, Marcoli M, Maura G (2005) In-vitro cortical neuronal networks as a new high-sensitive system for biosensing applications. Biosens Bioelectron 20:2071-2078. Massobrio P, Tedesco M, Giachello C, Ghirardi M, Fiumara F, Martinoia S (2009) Helix neuronal ensembles with controlled cell type composition and placement develop functional polysynaptic circuits on Micro-Electrode Arrays. Neuroscience Letters 467:121-126. Mazzoni A, Broccard FD, Garcia-Perez E, Bonifazi P, Ruaro ME, Torre V (2007) On the dynamics of the spontaneous activity in neuronal networks. PLoS One 2: 439 .
Nicolelis MAL, Lebedev MA (2009) Principles of neural ensemble physiology underlying the operation of brain-machine interfaces. Nature Reviews Neuroscience 10:530-540.
Panzeri S, Brunel N, Logothetis NK, Kayser C (2010) Sensory neural codes using multiplexed temporal scales. Trends Neurosci 33:111-120.
Park JW, Vahidi B, Taylor AM, Rhee SW, Jeon NL (2006) Microfluidic culture platform for neuroscience research. Nat Protoc 1:2128-2136.
Pasquale V, Massobrio P, Bologna LL, Chiappalone M, Martinoia S (2008) Self-organization and neuronal
avalanches in networks of dissociated cortical neurons. Neuroscience 153:1354-1369
Pearce TM, Williams JC (2007) Microtechnology: meet neurobiology. Lab on a chip 7:30-40.
Petermann T, Thiagarajan TC, Lebedev MA, Nicolelis MA, Chialvo DR, Plenz D (2009) Spontaneous cortical activity in awake monkeys composed of neuronal avalanches. Proc Natl Acad Sci U S A 106:15921-15926. Plenz D, Thiagarajan TC (2007) The organizing principles of neuronal avalanches: cell assemblies in the cortex? Trends in Neurosciences 30.
Ravenscroft MS, Bateman KE, Shaffer KM, Schessler HM, Jung DR, Schneider TW (1998) Developmental neurobiology implicationsfrom fabrication and analysis of hippocampal neuronal networks on patterned silanemodified surfaces. J Am Chem Soc 120:12169-12177. Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W (1997) Spikes: exploring the neural code. Cambridge, Massachusetts: The MIT Press. Shefi O, Golding I, Segev R, Ben-Jacob E, Ayali A (2002) Morphological characterization of in vitro neuronal networks. Phys Rev E Stat Nonlin Soft Matter Phys 66:021905.
Shew WL, Yang H, Yu S, Roy R, Plenz D (2011) Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches. The Journal of Neuroscience 31:55-63.
Shoval A, Adams C, David-Pur M, Shein M, Hanein Y, Sernagor E (2009) Carbon nanotube electrodes for effective interfacing with retinal tissue. Front Neuroengineering 2:4.
Sporns O, Honey CJ, Kotter R (2007) Identification and classification of hubs in brain networks. PLoS One 2: 1049.
Sporns O, Kotter R (2004) Motifs in brain networks. PLoS Biol 2:e369.
Sporns O, Tononi G, Edelman GM (2002) Theoretical neuroanatomy and the connectivity of the cerebral cortex. Behav Brain Res 135:69-74.
Sporns O, Tononi G, Kotter R (2005) The human connectome: A structural description of the human brain. PLoS computational biology 1:e42.
Sporns O, Zwi JD (2004) The small world of the cerebral cortex. Neuroinformatics 2:145-162.
Taylor DM, Tillery SI, Schwartz AB (2002) Direct cortical control of 3D neuroprosthetic devices. Science 296:1829-1832.
Tetzlaff C, Okujeni S, Egert U, Wörgötter F, Butz M (2010) Self-organized criticality in developing neuronal networks. PLoS Comput Biol 6:1001013.
Torimitsu KKA (1990) Selective outgrowth of sensory nerve fibers on metal oxide pattern in culture. Dev Brain Research 51:128-131.
Van Pelt J, Corner MA, Wolters PS, Rutten WLC, Ramakers GJA (2004) Longterm stability and developmental changes in spontaneous network burst firing patterns in dissociated rat cerebral cortex cell cultures on multi-electrode arrays. Neurosci Letters 361:86-89. Vogt AK, Wrobel G, Meyer W, Knoll W, Offenhäusser A (2005) Synaptic plasticity in micropatterned neuronal networks. Biomaterials 26:2549-2557.
Wagenaar DA, Madhavan R, Pine J, Potter SM
(2005) Controlling bursting in cortical cultures with closed-loop multi-electrode stimulation. The Journal of Neuroscience 25:680-688.
Wagenaar DA, Pine J, Potter SM (2004) Effective parameters for stimulation of dissociated cultures using multi-electrode arrays. J Neurosci Methods 138:27-37.
Wise KD, Najafi K, Drake KL (1984) A Multichannel Probe for Intracortical Single-Unit Recording. IEEE Trans Biomed Eng 31:583-583.
Yu S, Huang D, Singer W, Nikolic D (2008) A small world of neuronal synchrony. Cereb Cortex 18:28912901.

[^0]: ${ }^{1}$ Laboratorio di Neuroingegneria e Bionanotecnologie, Dipartimento di Ingegneria Biofisica ed Elettronica, Università degli studi di Genova.
 ${ }^{2}$ Neurotech group, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova.

[^1]: ${ }^{1}$ Le fettine organotipiche sono ottenute da fettine di cervello acute che vengono coltivate su particolari substrati e con particolare metodiche, permettendo la sopravvivenza del preparato per giorni e settimane.

[^2]: ${ }^{2}$ I Local Field Potential sono segnali registrati nel tessuto cerebrale a fronte dell'attività coordinata di più cellule (input sinaptici). Rappresentano l'input sincronizzato ad un gruppo di cellule (o singola cellula).

[^3]: ${ }^{3}$ II segnale BOLD (Blood Oxygenation Level Dependent) è un segnale metabolico che viene correlato con le variazioni di flusso sanguigno locale. In funzione di tali variazioni si ipotizza una variazione di corrente relativa ad attività neuronale nella zona.

